Sains Malaysiana 54(9)(2025): 2227-2242

http://doi.org/10.17576/jsm-2025-5409-10

 

Anticancer Efficacy of Silver Nanoparticles Synthesized from Erythrina variegata L. Leaves Extract against A549 Lung Cancer Cell Line

(Keberkesanan Antikanser Nanozarah Perak Disintesis daripada Erythrina variegata L. Ekstrak Daun terhadap Talian Sel Kanser Paru-paru A549)

 

HALIMATUSSAKDIAH HALIMATUSSAKDIAH1,*, VIVI MARDINA2, YULIDA AMRI1, MISDI MISDI2, PUJI WAHYUNINGSIH1 & SIOW-PING TAN3

 

1Department of Chemistry, Faculty of Science and Technology, Samudra University, Langsa, 24416, Aceh, Indonesia 2Department of Biology, Faculty of Science and Technology, Samudra University, Langsa, 24416, Aceh, Indonesia
3Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University Management and Technology, 53300 Kuala Lumpur, Malaysia

 

Received: 13 April 2025/Accepted: 18 July 2025

 

Abstract

Green synthesis using plant extracts as metal ion reducing agents is gaining attention for its eco-friendly approach. Silver nanoparticles (AgNPs) are widely studied for their ability to penetrate biological membranes, accumulate in organs, and exhibit anticancer activity. In this study, Erythrina variegata L. (Dadap) leaves extract was used as a natural reductant for AgNP synthesis. Phytochemical screening showed the presence of alkaloids, saponins, flavonoids, phenols, and tannins - compounds known for potential anticancer activity. UV-Vis spectrophotometry showed two main peaks within the 272-600 nm range. The peak at 272 nm indicates the presence of aromatic compounds, such as phenolics from the extract, which may be bound to the nanoparticle surface and function as reducing or stabilizing agents. The broader peak within 380-450 nm, commonly around 420 nm, corresponds to the surface plasmon resonance (SPR) of AgNPs, confirming their successful formation. FTIR analysis identified functional groups (-OH, -CH, C=O, C=C, and -NH) linked to phenolics, flavonoids, and alkaloids, along with Ag-O and Ag-N bonds indicating nanoparticle formation. XRD patterns confirmed an FCC crystal structure with characteristic peaks at 2θ = 38.1°, 44.2°, 64.5°, and 77.0°. TEM images showed spherical, well-distributed AgNPs, contrasting with the amorphous nature of the extract. Cytotoxicity tests on A549 lung cancer and Vero cells yielded IC50 values of 7.222 µg/mL and 3.488 µg/mL for the extract and AgNPs on A549 cells, and 9.4 µg/mL and 3.785 µg/mL on Vero cells, respectively. The selectivity index (SI) values of 1.3 and 1.09 indicate low selectivity and cytotoxic effects on both cell types. Although AgNPs showed stronger cytotoxicity against cancer cells, their non-selective toxicity suggests the need for further modification to enhance therapeutic safety.

 

Keywords: AgNPs; anti-lung cancer; Erythrina variegata L.; green synthesis; Ketambe

 

Abstrak

Kaedah sintesis hijau menggunakan ekstrak tumbuhan sebagai agen penurun ion logam semakin berkembang kerana sifatnya yang mesra alam. Zarah nano perak (AgNPs) terkenal dengan kebolehannya menembusi membran biologi, berkumpul dalam organ penting dan menunjukkan aktiviti antikanser. Dalam kajian ini, ekstrak daun Erythrina variegata L. (daun Dadap) digunakan sebagai agen penurun semula jadi untuk sintesis AgNPs. Saringan fitokimia menunjukkan kehadiran alkaloid, saponin, flavonoid, fenol dan tanin yang diketahui mempunyai potensi antikanser. Spektrofotometri UV-Vis mendedahkan dua puncak utama dalam julat 272-600 nm. Puncak pada 272 nm menunjukkan kehadiran sebatian aromatik, seperti fenol daripada ekstrak yang mungkin terikat pada permukaan nanozarah dan berfungsi sebagai agen pengurangan atau penstabilan. Puncak yang lebih luas dalam 380-450 nm, biasanya sekitar 420 nm, sepadan dengan resonans plasmon permukaan (SPR) nanozarah perak, mengesahkan pembentukannya yang berjaya. Analisis FTIR mengesahkan kumpulan berfungsi seperti -OH, -CH, C=O, C=C aromatik dan -NH yang dikaitkan dengan fenol, flavonoid dan alkaloid serta getaran Ag-O dan Ag-N yang menunjukkan pembentukan AgNPs. Corak XRD menunjukkan struktur kristal kubik berpusat muka (FCC) dengan puncak pada 2θ = 38.1°, 44.2°, 64.5° dan 77.0°. Imej TEM menunjukkan AgNPs berbentuk sfera, teragih sekata dan berstruktur baik, berbeza dengan sifat amorfus ekstrak daun. Ujian sitotoksik menunjukkan nilai IC50 ekstrak dan AgNPs ke atas sel kanser paru-paru A549 masing-masing ialah 7.222 µg/mL dan 3.488 µg/mL, manakala ke atas sel normal Vero ialah 9.4 µg/mL dan 3.785 µg/mL. Nilai indeks selektiviti (SI) 1.3 dan 1.09 menunjukkan kedua-duanya tidak selektif dan toksik terhadap kedua-dua jenis sel. Justeru, pengubahsuaian lanjut diperlukan untuk meningkatkan keselamatan terapeutik.

 

Kata kunci: AgNPs; anti kanser paru-paru; Erythrina variegata L.; Ketambe; sintesis hijau

 

REFERENCES

Aghazadeh, M., Ghaemi, M., Nozad Golikand, A., Yousefi, T. & Jangju, E. 2011. Yttrium oxide nanoparticles prepared by heat treatment of cathodically grown yttrium hydroxide. ISRN Ceramics 2011: 542104. https://doi.org/10.5402/2011/542104

Al-darwesh, M.Y., Ibrahim, S.S. & Mohammed, M.A. 2024. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results in Chemistry 7: 101368. https://doi.org/10.1016/j.rechem.2024.101368

Alharbi, N.S. & Alsubhi, N.S. 2022. Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. Journal of Radiation Research and Applied Sciences 15(3): 335-345. https://doi.org/10.1016/j.jrras.2022.08.009

Ali, M.H., Azad, M.A.K., Khan, K.A., Rahman, M.O., Chakma, U. & Kumer, A. 2023. Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS Omega 8(31): 28133-28142. https://doi.org/10.1021/acsomega.3c01261

Augustine, R., Hasan, A., Primavera, R., Wilson, R.J., Thakor, A.S. & Kevadiya, B.D. 2020. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications 25: 101692. https://doi.org/10.1016/j.mtcomm.2020.101692

Awale, R., Kulkarni, N. & Khadse, S. 2024. Interactions of nanoparticles with lipid and cell membranes. Advances in Healthcare and Nanoparticle Toxicology 171: 191-216. https://doi.org/10.21741/9781644903339-7

Badiah, H.I., Seedeh, F., Supriyanto, G. & Zaidan, A.H. 2019. Synthesis of silver nanoparticles and the development in analysis method. IOP Conference Series: Earth and Environmental Science 2019: 012005. https://doi.org/10.1088/1755-1315/217/1/012005

Bobyk, L., Tarantini, A., Beal, D., Veronesi, G., Kieffer, I., Motellier, S., Valsami-Jones, E., Lynch, I., Jouneau, P.H., Pernet-Gallay, K., Aude-Garcia, C., Sauvaigo, S., Douki, T., Rabilloud, T. & Carriere, M. 2021. Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: Dose-rate-dependent genotoxic impact. Environmental Science: Nano 8(3): 806-821. https://doi.org/10.1039/D0EN00533A

Chen, B., Zhang, C., Zhao, Y., Wang, D., Korshin, G.V., Ni, J. & Yan, M. 2020. Interpreting main features of the differential absorbance spectra of chlorinated natural organic matter: Comparison of the experimental and theoretical spectra of model compounds. Water Research 185: 116206. https://doi.org/10.1016/j.watres.2020.116206

Dargah, M.M., Pedram, P., Cabrera-Barjas, G., Delattre, C., Nesic, A., Santagata, G., Cerruti, P. & Moeini, A. 2024. Biomimetic synthesis of nanoparticles: A comprehensive review on green synthesis of nanoparticles with a focus on Prosopis farcta plant extracts and biomedical applications. Advances in Colloid and Interface Science 332: 103277. https://doi.org/10.1016/j.cis.2024.103277

Das, R., Nath, S.S., Chakdar, D., Gope, G. & Bhattacharjee, R. 2010. Synthesis of silver nanoparticles and their optical properties. Journal of Experimental Nanoscience 5(4): 357-362. https://doi.org/10.1080/17458080903583915

Dwiastuti, R., Johannes, S. & Riswanto, F.D.O. 2022. Optimization of nanosilver synthesis formula using bioreductor from cassava leaf water extract (Manihot esculenta Crantz): Application of Central Composite Design (CCD). J. Chemom. Pharm. Anal. 2(1): 64-178.

Eker, F., Duman, H., Akdaşçi, E., Witkowska, A.M., Bechelany, M. & Karav, S. 2024. Silver nanoparticles in therapeutics and beyond: A review of mechanism insights and applications. Nanomaterials 14(20): 1618. https://doi.org/10.3390/nano14201618

Fachreza Erdi Pratama & Rina Fajri Nuwarda. 2018. Review: Senyawa aktif antikanker dari bahan alam dan aktivitasnya. FARMAKA 16(1): 149-158.

Fageria, L., Bambroo, V., Mathew, A., Mukherjee, S., Chowdhury, R. & Pande, S. 2019. Functional autophagic flux regulates AgNP uptake and the internalized nanoparticles determine tumor cell fate by temporally regulating flux. International Journal of Nanomedicine 14: 9063-9076. https://doi.org/10.2147/IJN.S222211

Fankam, A.G. & Kuete, V. 2024. Ethnomedicinal uses, phytochemistry, and antiproliferative potential of the genus Erythrina. Advances in Botanical Research 112: 77-194. https://doi.org/10.1016/bs.abr.2024.01.009

Farshori, N.N., Al-Oqail, M.M., Al-Sheddi, E.S., Al-Massarani, S.M., Saquib, Q., Siddiqui, M.A., Wahab, R. & Al-Khedhairy, A.A. 2022. Green synthesis of silver nanoparticles using Phoenix dactylifera seed extract and its anticancer effect against human lung adenocarcinoma cells. Journal of Drug Delivery Science and Technology 70: 103260. https://doi.org/10.1016/j.jddst.2022.103260

Fernando, I. & Zhou, Y. 2019. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216: 297‑305. https://doi.org/10.1016/j.chemosphere.2018.10.122

Halimatussakdiah, Amna, U., Tan, S.P., Awang, K., Ali, A.M., Nafiah, M.A. & Ahmad, K. 2015. In vitro cytotoxic effect of indole alkaloids from the roots of Kopsia singapurensis Ridl. against the Human Promyelocytic Leukemia (HL-60) and the Human Cervical Cancer (HeLa) cells. International Journal of Pharmaceutical Sciences Review and Research 31(2): 89-95.

Halimatussakdiah, H., Amna, U. & Wahyuningsih, P. 2018. Preliminary phytochemical analysis and larvicidal activity of edible fern (Diplazium esculentum (Retz.) Sw.) extract against Culex. Jurnal Natural 18(3): 141-146. https://doi.org/10.24815/jn.v0i0.11335

Herlina, T., Syafruddin & Udin, Z. 2012. Senyawa aktif antikanker payudara dan antimalaria dari tumbuhan dadap ayam (Erhythrina valeriegata) secara in vitro (anti breast-cancer and anti-malarial active compounds of Erithrina variegata by in vitro test). Jurnal Manusia dan Lingkungan 19(1): 30-36.

Herlina, T., Julaeha, E., Kurnia, D. & Supratman, U. 2011. Potenial of dadap ayam (Erythrina variegata) plant as herbal medicine. Jurnal Medika Planta 1(4): 40-48.

Heydari, R. & Rashidipour, M. 2015. Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): Synthesis and in vitro cytotoxic effect on MCF-7 cells. International Journal of Breast Cancer 2015: 846743. https://doi.org/10.1155/2015/846743

Hussain, A., Alajmi, M.F., Khan, M.A., Pervez, S.A., Ahmed, F., Amir, S., Husain, F.M., Khan, M.S., Shaik, G.M., Hassan, I., Khan, R.A. & Rehman, M.T. 2019. Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Frontiers in Microbiology 10: 8. https://doi.org/10.3389/fmicb.2019.00008

Isibor, P.O., Sunday, A.S., Buba, A.B. & Oyewole, O.A. 2024. Mechanism of nanoparticle toxicity. In Environmental Nanotoxicology, edited by Isibor, P.O., Devi, G. & Enuneku, A.A. Springer Nature Switzerland. pp. 103-120. https://doi.org/10.1007/978-3-031-54154-4_6

Jangid, H., Singh, S., Kashyap, P., Singh, A. & Kumar, G. 2024. Advancing biomedical applications: An in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Frontiers in Pharmacology https://doi.org/10.3389/fphar.2024.1438227

John, R., John Kariyil, B. & Pta, U. 2021. Apoptosis mediated cytotoxic potential of Erythrina variegata L. stem bark in human breast carcinoma cell lines. Indian Journal of Experimental Biology 59: 437-447. http://bioinfo.ut.ee/primer3/

Joshi, A.S., Bapat, M.V., Singh, P. & Mijakovic, I. 2024. Viridibacillus culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis. Materials Today Bio 25: 100997. https://doi.org/10.1016/j.mtbio.2024.100997

Karunakar, K.K., Cheriyan, B.V., Krithikeshvaran, R., Gnanisha, M. & Abinavi, B. 2024. Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles. Biotechnology Notes 5:  64-79. https://doi.org/10.1016/j.biotno.2024.05.002

Kalita, S., Kaur, J. & Saxena, A. 2024. Use of Erythrina variegata Linn as green corrosion inhibitor for steel in 0.5 M sulphuric acid. Chemical Data Collections 51: 101142. https://doi.org/10.1016/j.cdc.2024.101142

Kasithevar, M., Saravanan, M., Prakash, P., Kumar, H., Ovais, M., Barabadi, H. & Shinwari, Z.K. 2017. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. Journal of Interdisciplinary Nanomedicine 2(2): 131-141. https://doi.org/10.1002/jin2.26

Kavitha, S., Renugadevi, J., Renganayaki, P.R., Suganthy, M., Meenakshi, P., Raja, K. & Madhan, K. 2023. Phytochemical profiling of Erythrina variegata leaves by gas chromatography-mass spectroscopy. Agricultural Science Digest - A Research Journal 43(4): 442-450. https://doi.org/10.18805/ag.D-5701

Kayode, T.H., Yetunde, T.J. & Omotayo, A.B. 2022. Silver nanoparticles’ biosynthesis and characterization with the extract of Jatropha curcas leaf: Analysis of corrosion inhibition activity. Makara Journal of Science 26(2): 137-144. https://doi.org/10.7454/mss.v26i2.1276

Kora, A.J., Beedu, S.R. & Jayaraman, A. 2012. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic and Medicinal Chemistry Letters 2(1): 17. https://doi.org/10.1186/2191-2858-2-17

Kulkarni, D., Sherkar, R., Shirsathe, C., Sonwane, R., Varpe, N., Shelke, S., More, M.P., Pardeshi, S.R., Dhaneshwar, G., Junnuthula, V. & Dyawanapelly, S. 2023. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Frontiers in Bioengineering and Biotechnology https://doi.org/10.3389/fbioe.2023.1159193

Kumar, A. & Shrotriya Dr., A.K. 2024. Green synthesis and characterization of zinc oxide nanoparticles using Nyctanthes arbor-tristis plant extracts: Assessing photocatalytic properties. International Journal for Research in Applied Science and Engineering Technology 12(7): 860-867. https://doi.org/10.22214/ijraset.2024.63666

Kumari Jha, S. & Jha, A. 2024. Sustainable utilization of renewable plant - Based material for the green synthesis of metal nanoparticles. In Smart Nanosystems - Advances in Research and Practice, edited by Kumar, B., Debut, A., Rafique, M., Tahir, M.B. & Irshad, M. https://doi.org/10.5772/intechopen.112672

Ling, H., Montoya, J., Hung, L. & Aykol, M. 2022. Solving inorganic crystal structures from X-ray powder diffraction using a generative first-principles framework. Computational Materials Science 214: 111687. https://doi.org/10.1016/j.commatsci.2022.111687

Madaniyah, L., Fiddaroini, S., Hayati, E.K., Rahman, M.F. & Sabarudin, A. 2025. Stability of biologically synthesized silver nanoparticles (AgNPs) using Acalypha indica L. plant extract as bioreductor and their potential as anticancer agents against T47D cells. Science and Technology Indonesia 10(1): 101-110. https://doi.org/10.26554/sti.2025.10.1.101-110

Mardina, V., Ilyas, S., Halimatussakdiah, H., Harmawan, T., Tanjung, M. & Yusof, F. 2021. Anticancer, antioxidant, and antibacterial activities of the methanolic extract from Sphagneticola trilobata (L.) J. F Pruski leaves. Journal of Advanced Pharmaceutical Technology & Research 12(3): 222-226. https://doi.org/10.4103/japtr.JAPTR_131_21

Mardina, V., Ilyas, S., Harmawan, T., Halimatussakdiah, H. & Tanjung, M. 2020. Antioxidant and cytotoxic activities of the ethyl acetate extract of Sphagneticola trilobata (L.) J.F. Pruski on MCF-7 breast cancer cell. Journal of Advanced Pharmaceutical Technology and Research 11(3): 123-127. https://doi.org/10.4103/japtr.JAPTR3120

Matysiak-Kucharek, M., Sawicki, K. & Kapka-Skrzypczak, L. 2023. Effect of silver nanoparticles on cytotoxicity, oxidative stress and pro-inflammatory proteins profile in lung adenocarcinoma A549 cells. Annals of Agricultural and Environmental Medicine 30(3): 566-569. https://doi.org/10.26444/aaem/169214

Meyer, M.L., Peters, S., Mok, T.S., Lam, S., Yang, P.C., Aggarwal, C., Brahmer, J., Dziadziuszko, R., Felip, E., Ferris, A., Forde, P.M., Gray, J., Gros, L., Halmos, B., Herbst, R., Jänne, P.A., Johnson, B.E., Kelly, K., Leighl, N.B., Liu, S., Lowy, I., Marron, T.U., Paz-Ares, L., Rizvi, N., Rudin, C.M., Shum, E., Stahel, R., Trunova, N., Bunn, P.A. & Hirsch, F.R. 2024. Lung cancer research and treatment: Global perspectives and strategic calls to action. Annals of Oncology 35(12): 1088-1104. https://doi.org/10.1016/j.annonc.2024.10.006

Mogensen, K.B. & Kneipp, K. 2014. Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution. Proceedings of Nanotech 2014.

Mohanta, Y.K., Panda, S.K., Jayabalan, R., Sharma, N., Bastia, A.K. & Mohanta, T.K. 2017. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences 4: 14. https://doi.org/10.3389/fmolb.2017.00014

Moors, E., Sharma, V., Tian, F. & Javed, B. 2023. Surface-modified silver nanoparticles and their encapsulation in liposomes can treat MCF-7 breast cancer cells. Journal of Functional Biomaterials 14(10): 509. https://doi.org/10.3390/jfb14100509

Nandiyanto, A.B.D., Oktiani, R. & Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1): 97-118. https://doi.org/10.17509/ijost.v4i1.15806

Nguyen, P.H., Trinh, N.T.V., Do, T.T., Vu, T.H., To, D.C., Pham, H.K.T., Truong, P.C.H., Pham Van, K.T. & Tran, M.H. 2024. Potential protein tyrosine phosphatase 1B and α-glucosidase inhibitory flavonoids from Erythrina variegata: Experimental and computational results. Journal of Chemical Research 48(1). https://doi.org/10.1177/17475198231226382

Nooreldeen, R. & Bach, H. 2021. Current and future development in lung cancer diagnosis. International Journal of Molecular Sciences 22(16): 8661. https://doi.org/10.3390/ijms22168661

Padmini, R., Nallal, V.U.M., Razia, M., Sivaramakrishnan, S., Alodaini, H.A., Hatamleh, A.A., Al-Dosary, M.A., Ranganathan, V. & Chung, W.J. 2022. Cytotoxic effect of silver nanoparticles synthesized from ethanolic extract of Allium sativum on A549 lung cancer cell line. Journal of King Saud University - Science 34(4): 102001. https://doi.org/10.1016/j.jksus.2022.102001

Parmar, J. 2024. A review on green synthesis of metallic nanoparticles by using plant extracts and their role in cancer. Journal of Natural Remedies 24(9): 1909-1922. https://doi.org/10.18311/jnr/2024/36484

Patel, M.P. & Patel, J.K. 2021. Biomedical applications of nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing. Springer International Publishing. pp. 25-36. https://doi.org/10.1007/978-3-030-50703-9_2

Piao, M.J., Kang, K.A., Fernando, P.D.S.M., Herath, H.M.U.L. & Hyun, J.W. 2024. Silver nanoparticle-induced cell damage via impaired mtROS-JNK/MnSOD signaling pathway. Toxicology Mechanisms and Methods 34(7): 803-812. https://doi.org/10.1080/15376516.2024.2350595

Ranjini, H.K., Manju, K., Shayista, H., Raj, S.N., Baker, S. & Prasad, A. 2024. Phytogenic silver nanoparticles from Callicarpa macrophylla and their biological activities. Journal of Pure and Applied Microbiology 18(4): 2636-2644. https://doi.org/10.22207/JPAM.18.4.35

Remya, R.R., Radhika Rajasree, S.R., Aranganathan, L., Suman, T.Y. & Gayathri, S. 2017. Enhanced cytotoxic activity of AgNPs on retinoblastoma Y79 cell lines synthesised using marine seaweed Turbinaria ornata. IET Nanobiotechnology 11(1): 18-23. https://doi.org/10.1049/iet-nbt.2016.0042

Robinson, J.P., Suriya, K., Subbaiya, R. & Ponmurugan, P. 2017. Antioxidant and cytotoxic activity of Tecoma stans against lung cancer cell line (A549). Brazilian Journal of Pharmaceutical Sciences 53(3): e00204. https://doi.org/https://doi.org/10.1590/s2175-97902017000300204

Sai, K., Thapa, R., Devkota, H.P. & Joshi, K.R. 2019. Phytochemical screening, free radical scavenging and α-amylase inhibitory activities of selected medicinal plants from Western Nepal. Medicines 6(2): 70. https://doi.org/10.3390/medicines6020070

Saleem, T., Tareen, M.H.K., Mehmood, W., Rashid, M. & Sumra, A.A. 2024. Medicinal plants mediated metal-based nanoparticles for biomedical applications and environmental remediation: A review. Frontiers in Chemical Sciences 5(1): 18-35. https://doi.org/10.52700/fcs.v5i1.82

Saputera, D., Nirwana, I., Josef, M. & Kamadjaja, K. 2021. Spectroscopy structure analysis of ellagic acid and calcium phosphate. Journal of International Dental and Medical Research 14(4): 1435-1441. http://www.jidmr.com

Sharma, V., Verma, D. & Okram, G.S. 2020. Influence of surfactant, particle size and dispersion medium on surface plasmon resonance of silver nanoparticles. Journal of Physics: Condensed Matter 32(14): 145302. https://doi.org/10.1088/1361-648X/ab601a

Siddiqui, T., Zia, M.K., Muaz, M., Ahsan, H. & Khan, F.H. 2023. Synthesis and characterization of silver nanoparticles (AgNPs) using chemico-physical methods. Indonesian Journal of Chemical Analysis (IJCA) 6(2): 124-132. https://doi.org/10.20885/ijca.vol6.iss2.art4

Singh, H., Desimone, M.F., Pandya, S., Jasani, S., George, N., Adnan, M., Aldarhami, A., Bazaid, A.S. & Alderhami, S.A. 2023. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. International Journal of Nanomedicine 18: 4727-4750. https://doi.org/10.2147/IJN.S419369

Singhal, M., Shaha, S. & Katsikogianni, M. 2024. Comparative analysis of cytotoxicity assays, from traditional to modern approaches. In Cytotoxicity - A Crucial Toxicity Test for In Vitro Experiments. IntechOpen. https://doi.org/10.5772/intechopen.1006842

Sozianty, D. & Febriansah, R. 2020. Cytotoxic activity and selectivity index of Binahong (Anredera cordifolia) extracts on MCF-7 breast cancer cells and vero normal. Acta Biochimica Indonesiana 3: 72-80.

Srećković, N.Z., Nedić, Z.P., Monti, D.M., D’Elia, L., Dimitrijević, S.B., Mihailović, N.R., Katanić Stanković, J.S. & Mihailović, V.B. 2023. Biosynthesis of silver nanoparticles using Salvia pratensis L. aerial part and root extracts: Bioactivity, biocompatibility, and catalytic potential. Molecules 28(3): 1387. https://doi.org/10.3390/molecules28031387

Sumi, P. & Devi, N.N. 2023. Review article on phytochemical and pharmacological activities of Alpinia purpurata and Erythrina variegata. Research Journal of Pharmacognosy and Phytochemistry 15(4): 298-304. https://doi.org/10.52711/0975-4385.2023.00047

Swathi, G.S., Divya, S. & Susha, S.T. 2024. Management of plant diseases with green synthesized nanoparticles using plant extracts. International Journal of Plant & Soil Science 36(10): 428-440. https://doi.org/10.9734/ijpss/2024/v36i105094

Thakkar, A.B., Subramanian, R.B., Thakkar, V.R., Bhatt, S.V., Chaki, S., Vaidya, Y.H., Patel, V. & Thakor, P. 2024. Apoptosis induction capability of silver nanoparticles capped with Acorus calamus L. and Dalbergia sissoo Roxb. Ex DC. against lung carcinoma cells. Heliyon 10(2): e24400. https://doi.org/10.1016/j.heliyon.2024.e24400

Wu, M., Guo, H., Liu, L., Liu, Y. & Xie, L. 2019. Size-dependent cellular uptake and localization profiles of silver nanoparticles. International Journal of Nanomedicine 14: 4247-4259. https://doi.org/10.2147/IJN.S201107

Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., He, F. & Hong, J. 2022. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology and Innovation 26: 102336. https://doi.org/10.1016/j.eti.2022.102336

Yoshida, K. 2024. Role of nanoparticle size in the photocatalytic degradation of pollutants. Journal of Chemistry 3(2): 12-20. https://doi.org/10.47672/jchem.2405

Zhang, W. 2014. Nanoparticle aggregation: Principles and modeling. In Nanomaterial Impacts on Cell Biology and Medicine, edited by Capco, D. & Chen, Y. Dordrecht: Springer. pp. 19-43. https://doi.org/10.1007/978-94-017-8739-0_2

Zurba, N. & Cahyani, W.S. 2022. Pengelolaan potensi ekonomi dan strategi kebijakan pada ekosistem mangrove di Kuala Langsa Aceh. Media Agribisnis 6(2): 262-271. https://doi.org/10.35326/agribisnis.v6i2.2843

 

*Corresponding author; email: halimatussakdiah@unsam.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next