Sains Malaysiana 54(9)(2025): 2227-2242
http://doi.org/10.17576/jsm-2025-5409-10
Anticancer Efficacy of Silver Nanoparticles
Synthesized from Erythrina variegata L. Leaves Extract against A549 Lung
Cancer Cell Line
(Keberkesanan Antikanser Nanozarah Perak Disintesis daripada Erythrina
variegata L. Ekstrak Daun terhadap Talian Sel Kanser Paru-paru A549)
HALIMATUSSAKDIAH
HALIMATUSSAKDIAH1,*, VIVI MARDINA2,
YULIDA AMRI1, MISDI MISDI2, PUJI WAHYUNINGSIH1 &
SIOW-PING TAN3
1Department
of Chemistry, Faculty of Science and Technology, Samudra University, Langsa,
24416, Aceh, Indonesia 2Department of Biology, Faculty of Science
and Technology, Samudra University, Langsa, 24416, Aceh, Indonesia
3Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University Management and Technology,
53300 Kuala Lumpur, Malaysia
Received: 13 April 2025/Accepted: 18 July 2025
Abstract
Green synthesis using
plant extracts as metal ion reducing agents is gaining attention for its
eco-friendly approach. Silver nanoparticles (AgNPs)
are widely studied for their ability to penetrate biological membranes,
accumulate in organs, and exhibit anticancer activity. In this study, Erythrina
variegata L. (Dadap) leaves extract was used as a natural reductant for AgNP synthesis. Phytochemical screening showed the presence
of alkaloids, saponins, flavonoids, phenols, and tannins - compounds known for
potential anticancer activity. UV-Vis spectrophotometry showed two main peaks within the 272-600 nm range. The peak
at 272 nm indicates the presence of aromatic compounds, such as phenolics from
the extract, which may be bound to the nanoparticle surface and function as
reducing or stabilizing agents. The broader peak within 380-450 nm, commonly
around 420 nm, corresponds to the surface plasmon resonance (SPR) of AgNPs, confirming their successful formation. FTIR analysis
identified functional groups (-OH, -CH, C=O, C=C, and -NH) linked to phenolics,
flavonoids, and alkaloids, along with Ag-O and Ag-N bonds indicating
nanoparticle formation. XRD patterns confirmed an FCC crystal structure with
characteristic peaks at 2θ = 38.1°, 44.2°, 64.5°, and 77.0°. TEM images
showed spherical, well-distributed AgNPs, contrasting
with the amorphous nature of the extract. Cytotoxicity tests on A549 lung
cancer and Vero cells yielded IC50 values of 7.222 µg/mL and 3.488
µg/mL for the extract and AgNPs on A549 cells, and
9.4 µg/mL and 3.785 µg/mL on Vero cells, respectively. The selectivity index
(SI) values of 1.3 and 1.09 indicate low selectivity and cytotoxic effects on
both cell types. Although AgNPs showed stronger
cytotoxicity against cancer cells, their non-selective toxicity suggests the
need for further modification to enhance therapeutic safety.
Keywords: AgNPs;
anti-lung cancer; Erythrina variegata L.; green synthesis; Ketambe
Abstrak
Kaedah sintesis hijau menggunakan ekstrak tumbuhan sebagai agen penurun ion logam semakin berkembang kerana sifatnya yang mesra alam. Zarah nano perak (AgNPs) terkenal
dengan kebolehannya menembusi membran biologi, berkumpul dalam organ penting
dan menunjukkan aktiviti antikanser. Dalam kajian ini, ekstrak daun Erythrina
variegata L. (daun Dadap) digunakan sebagai agen penurun semula jadi untuk
sintesis AgNPs. Saringan
fitokimia menunjukkan kehadiran alkaloid, saponin, flavonoid, fenol dan tanin
yang diketahui mempunyai potensi antikanser. Spektrofotometri UV-Vis mendedahkan
dua puncak utama dalam julat 272-600 nm. Puncak pada 272 nm menunjukkan
kehadiran sebatian aromatik, seperti fenol daripada ekstrak yang mungkin
terikat pada permukaan nanozarah dan berfungsi sebagai agen pengurangan atau
penstabilan. Puncak yang lebih luas dalam 380-450 nm, biasanya sekitar 420 nm,
sepadan dengan resonans plasmon permukaan (SPR) nanozarah perak, mengesahkan
pembentukannya yang berjaya. Analisis FTIR mengesahkan kumpulan berfungsi
seperti -OH, -CH, C=O, C=C aromatik dan -NH yang dikaitkan dengan fenol,
flavonoid dan alkaloid serta getaran Ag-O dan Ag-N yang menunjukkan pembentukan
AgNPs. Corak XRD menunjukkan struktur kristal kubik berpusat muka (FCC) dengan
puncak pada 2θ = 38.1°, 44.2°, 64.5° dan 77.0°. Imej TEM menunjukkan AgNPs
berbentuk sfera, teragih sekata dan berstruktur baik, berbeza dengan sifat
amorfus ekstrak daun. Ujian sitotoksik menunjukkan nilai IC50 ekstrak dan AgNPs ke atas sel kanser paru-paru A549 masing-masing ialah 7.222
µg/mL dan 3.488 µg/mL, manakala ke atas sel normal Vero ialah 9.4 µg/mL dan
3.785 µg/mL. Nilai indeks selektiviti (SI) 1.3 dan 1.09 menunjukkan
kedua-duanya tidak selektif dan toksik terhadap kedua-dua jenis sel. Justeru,
pengubahsuaian lanjut diperlukan untuk meningkatkan keselamatan terapeutik.
Kata kunci: AgNPs; anti kanser paru-paru; Erythrina
variegata L.; Ketambe; sintesis hijau
REFERENCES
Aghazadeh, M., Ghaemi, M., Nozad Golikand, A., Yousefi, T. & Jangju, E. 2011.
Yttrium oxide nanoparticles prepared by heat treatment of cathodically grown
yttrium hydroxide. ISRN Ceramics 2011: 542104.
https://doi.org/10.5402/2011/542104
Al-darwesh, M.Y.,
Ibrahim, S.S. & Mohammed, M.A. 2024. A review on plant extract mediated
green synthesis of zinc oxide nanoparticles and their biomedical applications. Results
in Chemistry 7: 101368. https://doi.org/10.1016/j.rechem.2024.101368
Alharbi, N.S. & Alsubhi,
N.S. 2022. Green synthesis and anticancer activity of silver nanoparticles
prepared using fruit extract of Azadirachta indica. Journal of Radiation Research and Applied Sciences 15(3):
335-345. https://doi.org/10.1016/j.jrras.2022.08.009
Ali, M.H., Azad, M.A.K.,
Khan, K.A., Rahman, M.O., Chakma, U. & Kumer, A. 2023. Analysis of crystallographic structures and
properties of silver nanoparticles synthesized using PKL extract and nanoscale
characterization techniques. ACS Omega 8(31): 28133-28142.
https://doi.org/10.1021/acsomega.3c01261
Augustine, R., Hasan, A., Primavera, R.,
Wilson, R.J., Thakor, A.S. & Kevadiya, B.D. 2020.
Cellular uptake and retention of nanoparticles: Insights on particle properties
and interaction with cellular components. Materials Today Communications 25: 101692. https://doi.org/10.1016/j.mtcomm.2020.101692
Awale, R., Kulkarni, N. & Khadse, S. 2024.
Interactions of nanoparticles with lipid and cell membranes. Advances in
Healthcare and Nanoparticle Toxicology 171: 191-216.
https://doi.org/10.21741/9781644903339-7
Badiah, H.I., Seedeh,
F., Supriyanto, G. & Zaidan, A.H. 2019. Synthesis of silver nanoparticles
and the development in analysis method. IOP Conference Series: Earth and
Environmental Science 2019: 012005.
https://doi.org/10.1088/1755-1315/217/1/012005
Bobyk, L.,
Tarantini, A., Beal, D., Veronesi, G., Kieffer, I., Motellier,
S., Valsami-Jones, E., Lynch, I., Jouneau, P.H., Pernet-Gallay, K., Aude-Garcia, C., Sauvaigo,
S., Douki, T., Rabilloud,
T. & Carriere, M. 2021. Toxicity and chemical transformation of silver
nanoparticles in A549 lung cells: Dose-rate-dependent genotoxic impact. Environmental
Science: Nano 8(3): 806-821. https://doi.org/10.1039/D0EN00533A
Chen, B., Zhang, C., Zhao,
Y., Wang, D., Korshin, G.V., Ni, J. & Yan, M. 2020. Interpreting main features of the differential
absorbance spectra of chlorinated natural organic matter: Comparison of the
experimental and theoretical spectra of model compounds. Water Research 185: 116206. https://doi.org/10.1016/j.watres.2020.116206
Dargah, M.M., Pedram, P., Cabrera-Barjas, G.,
Delattre, C., Nesic, A., Santagata, G., Cerruti, P. & Moeini,
A. 2024. Biomimetic synthesis of nanoparticles: A comprehensive review on green
synthesis of nanoparticles with a focus on Prosopis farcta plant extracts and biomedical applications. Advances in Colloid and
Interface Science 332: 103277. https://doi.org/10.1016/j.cis.2024.103277
Das, R., Nath, S.S., Chakdar,
D., Gope, G. & Bhattacharjee, R. 2010. Synthesis of silver nanoparticles
and their optical properties. Journal of Experimental Nanoscience 5(4):
357-362. https://doi.org/10.1080/17458080903583915
Dwiastuti, R.,
Johannes, S. & Riswanto, F.D.O. 2022.
Optimization of nanosilver synthesis formula using bioreductor from cassava leaf water extract (Manihot
esculenta Crantz): Application of Central Composite Design (CCD). J. Chemom. Pharm. Anal. 2(1): 64-178.
Eker, F., Duman, H., Akdaşçi,
E., Witkowska, A.M., Bechelany, M. & Karav, S.
2024. Silver nanoparticles in therapeutics and beyond: A review of mechanism
insights and applications. Nanomaterials 14(20): 1618. https://doi.org/10.3390/nano14201618
Fachreza Erdi Pratama
& Rina Fajri Nuwarda. 2018. Review: Senyawa aktif antikanker dari bahan
alam dan aktivitasnya. FARMAKA 16(1): 149-158.
Fageria, L., Bambroo, V., Mathew, A., Mukherjee, S., Chowdhury, R. &
Pande, S. 2019. Functional autophagic flux regulates AgNP uptake and the internalized nanoparticles determine tumor cell fate by temporally regulating flux. International Journal of
Nanomedicine 14: 9063-9076. https://doi.org/10.2147/IJN.S222211
Fankam, A.G. & Kuete, V. 2024.
Ethnomedicinal uses, phytochemistry, and antiproliferative potential of the
genus Erythrina. Advances in Botanical Research 112: 77-194.
https://doi.org/10.1016/bs.abr.2024.01.009
Farshori, N.N.,
Al-Oqail, M.M., Al-Sheddi,
E.S., Al-Massarani, S.M., Saquib, Q., Siddiqui, M.A.,
Wahab, R. & Al-Khedhairy, A.A. 2022. Green
synthesis of silver nanoparticles using Phoenix dactylifera seed extract
and its anticancer effect against human lung adenocarcinoma cells. Journal
of Drug Delivery Science and Technology 70: 103260.
https://doi.org/10.1016/j.jddst.2022.103260
Fernando, I. & Zhou, Y. 2019. Impact of pH
on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216: 297‑305.
https://doi.org/10.1016/j.chemosphere.2018.10.122
Halimatussakdiah, Amna,
U., Tan, S.P., Awang, K., Ali, A.M., Nafiah, M.A. & Ahmad, K. 2015. In
vitro cytotoxic effect of indole alkaloids from the roots of Kopsia singapurensis Ridl. against the Human Promyelocytic Leukemia (HL-60) and the Human Cervical Cancer (HeLa) cells. International Journal of
Pharmaceutical Sciences Review and Research 31(2): 89-95.
Halimatussakdiah, H.,
Amna, U. & Wahyuningsih, P. 2018. Preliminary phytochemical analysis and
larvicidal activity of edible fern (Diplazium esculentum (Retz.) Sw.) extract against Culex. Jurnal Natural 18(3): 141-146. https://doi.org/10.24815/jn.v0i0.11335
Herlina, T., Syafruddin & Udin, Z. 2012. Senyawa aktif antikanker payudara dan antimalaria dari tumbuhan dadap ayam (Erhythrina valeriegata) secara in
vitro (anti breast-cancer and anti-malarial active compounds of Erithrina variegata by in vitro test). Jurnal Manusia dan Lingkungan 19(1): 30-36.
Herlina, T., Julaeha, E., Kurnia, D. & Supratman, U. 2011. Potenial of dadap ayam (Erythrina variegata) plant as herbal medicine. Jurnal Medika Planta 1(4): 40-48.
Heydari, R. & Rashidipour,
M. 2015. Green synthesis of silver nanoparticles using extract of oak fruit
hull (Jaft): Synthesis and in vitro cytotoxic
effect on MCF-7 cells. International Journal of Breast Cancer 2015:
846743. https://doi.org/10.1155/2015/846743
Hussain, A., Alajmi, M.F., Khan, M.A., Pervez,
S.A., Ahmed, F., Amir, S., Husain, F.M., Khan, M.S., Shaik, G.M., Hassan, I.,
Khan, R.A. & Rehman, M.T. 2019. Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Frontiers
in Microbiology 10: 8. https://doi.org/10.3389/fmicb.2019.00008
Isibor, P.O., Sunday, A.S., Buba, A.B. &
Oyewole, O.A. 2024. Mechanism of nanoparticle toxicity. In Environmental
Nanotoxicology, edited by Isibor, P.O., Devi, G. & Enuneku,
A.A. Springer Nature Switzerland. pp. 103-120.
https://doi.org/10.1007/978-3-031-54154-4_6
Jangid, H., Singh, S.,
Kashyap, P., Singh, A. & Kumar, G. 2024. Advancing
biomedical applications: An in-depth analysis of silver nanoparticles in
antimicrobial, anticancer, and wound healing roles. Frontiers in
Pharmacology https://doi.org/10.3389/fphar.2024.1438227
John, R., John Kariyil, B. & Pta, U. 2021. Apoptosis mediated cytotoxic potential of Erythrina
variegata L. stem bark in human breast carcinoma cell lines. Indian
Journal of Experimental Biology 59: 437-447. http://bioinfo.ut.ee/primer3/
Joshi, A.S., Bapat, M.V.,
Singh, P. & Mijakovic, I. 2024. Viridibacillus culture derived silver nanoparticles exert
potent anticancer action in 2D and 3D models of lung cancer via mitochondrial
depolarization-mediated apoptosis. Materials Today Bio 25: 100997.
https://doi.org/10.1016/j.mtbio.2024.100997
Karunakar, K.K., Cheriyan, B.V., Krithikeshvaran, R., Gnanisha, M.
& Abinavi, B. 2024. Therapeutic advancements in
nanomedicine: The multifaceted roles of silver nanoparticles. Biotechnology
Notes 5: 64-79.
https://doi.org/10.1016/j.biotno.2024.05.002
Kalita, S., Kaur, J. & Saxena, A. 2024. Use
of Erythrina variegata Linn as green corrosion inhibitor for steel in
0.5 M sulphuric acid. Chemical Data Collections 51: 101142.
https://doi.org/10.1016/j.cdc.2024.101142
Kasithevar, M.,
Saravanan, M., Prakash, P., Kumar, H., Ovais, M., Barabadi,
H. & Shinwari, Z.K. 2017. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. Journal of
Interdisciplinary Nanomedicine 2(2): 131-141.
https://doi.org/10.1002/jin2.26
Kavitha, S., Renugadevi,
J., Renganayaki, P.R., Suganthy, M., Meenakshi, P.,
Raja, K. & Madhan, K. 2023. Phytochemical profiling of Erythrina
variegata leaves by gas chromatography-mass spectroscopy. Agricultural
Science Digest - A Research Journal 43(4): 442-450.
https://doi.org/10.18805/ag.D-5701
Kayode, T.H., Yetunde, T.J. & Omotayo, A.B.
2022. Silver nanoparticles’ biosynthesis and characterization with the extract
of Jatropha curcas leaf: Analysis of corrosion
inhibition activity. Makara Journal of Science 26(2): 137-144.
https://doi.org/10.7454/mss.v26i2.1276
Kora, A.J., Beedu,
S.R. & Jayaraman, A. 2012. Size-controlled green synthesis of silver
nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological
activity. Organic and Medicinal Chemistry Letters 2(1): 17.
https://doi.org/10.1186/2191-2858-2-17
Kulkarni, D., Sherkar,
R., Shirsathe, C., Sonwane, R., Varpe,
N., Shelke, S., More, M.P., Pardeshi, S.R., Dhaneshwar, G., Junnuthula,
V. & Dyawanapelly, S. 2023. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Frontiers
in Bioengineering and Biotechnology https://doi.org/10.3389/fbioe.2023.1159193
Kumar, A. & Shrotriya Dr., A.K. 2024. Green synthesis and characterization of zinc oxide
nanoparticles using Nyctanthes arbor-tristis plant extracts: Assessing photocatalytic
properties. International Journal for Research in Applied Science and
Engineering Technology 12(7): 860-867.
https://doi.org/10.22214/ijraset.2024.63666
Kumari Jha, S. & Jha,
A. 2024. Sustainable utilization of renewable plant -
Based material for the green synthesis of metal nanoparticles. In Smart Nanosystems - Advances in Research and Practice, edited
by Kumar, B., Debut, A., Rafique, M., Tahir, M.B. & Irshad, M.
https://doi.org/10.5772/intechopen.112672
Ling, H., Montoya, J.,
Hung, L. & Aykol, M. 2022. Solving
inorganic crystal structures from X-ray powder diffraction using a generative
first-principles framework. Computational Materials Science 214: 111687.
https://doi.org/10.1016/j.commatsci.2022.111687
Madaniyah, L., Fiddaroini,
S., Hayati, E.K., Rahman, M.F. & Sabarudin, A. 2025. Stability of
biologically synthesized silver nanoparticles (AgNPs)
using Acalypha indica L. plant extract as bioreductor and their potential as anticancer agents against T47D cells. Science and
Technology Indonesia 10(1): 101-110.
https://doi.org/10.26554/sti.2025.10.1.101-110
Mardina, V., Ilyas, S., Halimatussakdiah,
H., Harmawan, T., Tanjung, M. & Yusof, F. 2021.
Anticancer, antioxidant, and antibacterial activities of the methanolic extract
from Sphagneticola trilobata (L.) J. F Pruski leaves. Journal of Advanced Pharmaceutical Technology &
Research 12(3): 222-226. https://doi.org/10.4103/japtr.JAPTR_131_21
Mardina, V., Ilyas, S., Harmawan,
T., Halimatussakdiah, H. & Tanjung, M. 2020.
Antioxidant and cytotoxic activities of the ethyl acetate extract of Sphagneticola trilobata (L.) J.F. Pruski on MCF-7 breast cancer cell. Journal of Advanced
Pharmaceutical Technology and Research 11(3): 123-127.
https://doi.org/10.4103/japtr.JAPTR3120
Matysiak-Kucharek, M., Sawicki, K. &
Kapka-Skrzypczak, L. 2023. Effect of silver nanoparticles on cytotoxicity,
oxidative stress and pro-inflammatory proteins profile in lung adenocarcinoma
A549 cells. Annals of Agricultural and Environmental Medicine 30(3):
566-569. https://doi.org/10.26444/aaem/169214
Meyer, M.L., Peters, S., Mok, T.S., Lam, S.,
Yang, P.C., Aggarwal, C., Brahmer, J., Dziadziuszko,
R., Felip, E., Ferris, A., Forde, P.M., Gray, J., Gros, L., Halmos,
B., Herbst, R., Jänne, P.A., Johnson, B.E., Kelly,
K., Leighl, N.B., Liu, S., Lowy, I., Marron, T.U.,
Paz-Ares, L., Rizvi, N., Rudin, C.M., Shum, E., Stahel, R., Trunova,
N., Bunn, P.A. & Hirsch, F.R. 2024. Lung cancer research and treatment:
Global perspectives and strategic calls to action. Annals of Oncology 35(12): 1088-1104. https://doi.org/10.1016/j.annonc.2024.10.006
Mogensen, K.B. & Kneipp, K. 2014. Blueshift
of the silver plasmon band using controlled nanoparticle dissolution in aqueous
solution. Proceedings of Nanotech 2014.
Mohanta, Y.K., Panda, S.K., Jayabalan,
R., Sharma, N., Bastia, A.K. & Mohanta, T.K. 2017. Antimicrobial,
antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf
extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences 4: 14.
https://doi.org/10.3389/fmolb.2017.00014
Moors, E., Sharma, V., Tian, F. & Javed, B.
2023. Surface-modified silver nanoparticles and their encapsulation in
liposomes can treat MCF-7 breast cancer cells. Journal of Functional
Biomaterials 14(10): 509. https://doi.org/10.3390/jfb14100509
Nandiyanto,
A.B.D., Oktiani, R. & Ragadhita,
R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian
Journal of Science and Technology 4(1): 97-118.
https://doi.org/10.17509/ijost.v4i1.15806
Nguyen, P.H., Trinh, N.T.V., Do, T.T., Vu,
T.H., To, D.C., Pham, H.K.T., Truong, P.C.H., Pham Van, K.T. & Tran, M.H.
2024. Potential protein tyrosine phosphatase 1B and α-glucosidase
inhibitory flavonoids from Erythrina variegata: Experimental and
computational results. Journal of Chemical Research 48(1).
https://doi.org/10.1177/17475198231226382
Nooreldeen, R.
& Bach, H. 2021. Current and future development in lung cancer diagnosis. International
Journal of Molecular Sciences 22(16): 8661.
https://doi.org/10.3390/ijms22168661
Padmini, R., Nallal,
V.U.M., Razia, M., Sivaramakrishnan, S., Alodaini,
H.A., Hatamleh, A.A., Al-Dosary,
M.A., Ranganathan, V. & Chung, W.J. 2022. Cytotoxic effect of silver
nanoparticles synthesized from ethanolic extract of Allium sativum on
A549 lung cancer cell line. Journal of King Saud University - Science 34(4): 102001. https://doi.org/10.1016/j.jksus.2022.102001
Parmar, J. 2024. A review on green synthesis of
metallic nanoparticles by using plant extracts and their role in cancer. Journal
of Natural Remedies 24(9): 1909-1922.
https://doi.org/10.18311/jnr/2024/36484
Patel, M.P. & Patel, J.K. 2021. Biomedical
applications of nanoparticles. In Emerging Technologies for Nanoparticle
Manufacturing. Springer International Publishing. pp. 25-36.
https://doi.org/10.1007/978-3-030-50703-9_2
Piao, M.J., Kang, K.A., Fernando, P.D.S.M.,
Herath, H.M.U.L. & Hyun, J.W. 2024. Silver nanoparticle-induced cell damage
via impaired mtROS-JNK/MnSOD signaling pathway. Toxicology Mechanisms and
Methods 34(7): 803-812. https://doi.org/10.1080/15376516.2024.2350595
Ranjini, H.K., Manju, K., Shayista, H., Raj,
S.N., Baker, S. & Prasad, A. 2024. Phytogenic silver nanoparticles from Callicarpa
macrophylla and their biological activities. Journal of Pure and Applied
Microbiology 18(4): 2636-2644. https://doi.org/10.22207/JPAM.18.4.35
Remya, R.R., Radhika
Rajasree, S.R., Aranganathan, L., Suman, T.Y. & Gayathri, S. 2017. Enhanced cytotoxic activity of AgNPs on retinoblastoma Y79 cell lines synthesised using
marine seaweed Turbinaria ornata. IET
Nanobiotechnology 11(1): 18-23. https://doi.org/10.1049/iet-nbt.2016.0042
Robinson, J.P., Suriya, K., Subbaiya,
R. & Ponmurugan, P. 2017. Antioxidant and
cytotoxic activity of Tecoma stans against lung cancer cell line (A549). Brazilian Journal of Pharmaceutical Sciences 53(3): e00204.
https://doi.org/https://doi.org/10.1590/s2175-97902017000300204
Sai, K., Thapa, R., Devkota, H.P. & Joshi,
K.R. 2019. Phytochemical screening, free radical scavenging and α-amylase
inhibitory activities of selected medicinal plants from Western Nepal. Medicines 6(2): 70. https://doi.org/10.3390/medicines6020070
Saleem, T., Tareen, M.H.K., Mehmood, W.,
Rashid, M. & Sumra, A.A. 2024. Medicinal plants mediated metal-based
nanoparticles for biomedical applications and environmental remediation: A
review. Frontiers in Chemical Sciences 5(1): 18-35.
https://doi.org/10.52700/fcs.v5i1.82
Saputera, D., Nirwana, I., Josef, M. & Kamadjaja,
K. 2021. Spectroscopy structure analysis of ellagic acid and calcium phosphate. Journal of International Dental and Medical Research 14(4): 1435-1441.
http://www.jidmr.com
Sharma, V., Verma, D.
& Okram, G.S. 2020. Influence
of surfactant, particle size and dispersion medium on surface plasmon resonance
of silver nanoparticles. Journal of Physics: Condensed Matter 32(14):
145302. https://doi.org/10.1088/1361-648X/ab601a
Siddiqui, T., Zia, M.K., Muaz, M., Ahsan, H.
& Khan, F.H. 2023. Synthesis and characterization of silver nanoparticles (AgNPs) using chemico-physical
methods. Indonesian Journal of Chemical Analysis (IJCA) 6(2): 124-132.
https://doi.org/10.20885/ijca.vol6.iss2.art4
Singh, H., Desimone, M.F., Pandya, S., Jasani,
S., George, N., Adnan, M., Aldarhami, A., Bazaid, A.S. & Alderhami,
S.A. 2023. Revisiting the green synthesis of nanoparticles: Uncovering
influences of plant extracts as reducing agents for enhanced synthesis
efficiency and its biomedical applications. International Journal of
Nanomedicine 18: 4727-4750. https://doi.org/10.2147/IJN.S419369
Singhal, M., Shaha, S. & Katsikogianni, M. 2024. Comparative analysis of
cytotoxicity assays, from traditional to modern approaches. In Cytotoxicity
- A Crucial Toxicity Test for In Vitro Experiments. IntechOpen.
https://doi.org/10.5772/intechopen.1006842
Sozianty, D.
& Febriansah, R. 2020. Cytotoxic activity and
selectivity index of Binahong (Anredera cordifolia) extracts on MCF-7 breast cancer cells and vero normal. Acta Biochimica Indonesiana 3: 72-80.
Srećković, N.Z., Nedić, Z.P.,
Monti, D.M., D’Elia, L., Dimitrijević, S.B., Mihailović, N.R., Katanić Stanković, J.S. & Mihailović,
V.B. 2023. Biosynthesis of silver nanoparticles using Salvia pratensis L. aerial part and root extracts: Bioactivity, biocompatibility, and catalytic
potential. Molecules 28(3): 1387.
https://doi.org/10.3390/molecules28031387
Sumi, P. & Devi, N.N. 2023. Review article
on phytochemical and pharmacological activities of Alpinia purpurata and Erythrina variegata. Research
Journal of Pharmacognosy and Phytochemistry 15(4): 298-304.
https://doi.org/10.52711/0975-4385.2023.00047
Swathi, G.S., Divya, S. & Susha, S.T. 2024. Management of plant diseases with green
synthesized nanoparticles using plant extracts. International Journal of
Plant & Soil Science 36(10): 428-440.
https://doi.org/10.9734/ijpss/2024/v36i105094
Thakkar, A.B., Subramanian, R.B., Thakkar,
V.R., Bhatt, S.V., Chaki, S., Vaidya, Y.H., Patel, V. & Thakor, P. 2024.
Apoptosis induction capability of silver nanoparticles capped with Acorus
calamus L. and Dalbergia sissoo Roxb. Ex
DC. against lung carcinoma cells. Heliyon 10(2): e24400. https://doi.org/10.1016/j.heliyon.2024.e24400
Wu, M., Guo, H., Liu, L., Liu, Y. & Xie, L.
2019. Size-dependent cellular uptake and localization profiles of silver
nanoparticles. International Journal of Nanomedicine 14: 4247-4259.
https://doi.org/10.2147/IJN.S201107
Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P.,
Rico, C., He, F. & Hong, J. 2022. Green synthesis of nanoparticles: Current
developments and limitations. Environmental Technology and Innovation 26: 102336. https://doi.org/10.1016/j.eti.2022.102336
Yoshida, K. 2024. Role of nanoparticle size in
the photocatalytic degradation of pollutants. Journal of Chemistry 3(2):
12-20. https://doi.org/10.47672/jchem.2405
Zhang, W. 2014. Nanoparticle aggregation:
Principles and modeling. In Nanomaterial Impacts
on Cell Biology and Medicine, edited by Capco, D. & Chen, Y. Dordrecht:
Springer. pp. 19-43. https://doi.org/10.1007/978-94-017-8739-0_2
Zurba, N.
& Cahyani, W.S. 2022. Pengelolaan potensi ekonomi dan strategi kebijakan pada
ekosistem mangrove di Kuala Langsa Aceh. Media Agribisnis 6(2):
262-271. https://doi.org/10.35326/agribisnis.v6i2.2843
*Corresponding author; email:
halimatussakdiah@unsam.ac.id